Contravariant functor

From Cattheory

Definition

Definition in basic terms

Suppose are categories. A contravariant functor is defined by the following data:

  • A mapping .
  • For every , a mapping .

satisfying the following conditions:

  • It preserves the identity map: For any , .
  • It preserves composition, albeit reversing the order of composition: For any , and , we have .

Definition in terms of the opposite category

Suppose are categories. A contravariant functor from to can be defined as:

  • A functor from (the opposite category to ) to .
  • A functor from to (the opposite category to ).

A functor in the usual sense of the word is sometimes termed a covariant functor to contrast it with a contravariant functor.