Functor: Difference between revisions

From Cattheory
(New page: ==Definition== Suppose <math>\mathcal{C},\mathcal{D}</math> are categories. A '''functor''' <math>\mathcal{F}</math> from <math>\mathcal{C}</math> to <math>\mathcal{D}</math>...)
 
No edit summary
Line 1: Line 1:
==Definition==
==Definition==


Suppose <math>\mathcal{C},\mathcal{D}</math> are [[category|categories]]. A '''functor''' <math>\mathcal{F}</math> from <math>\mathcal{C}</math> to <math>\mathcal{D}</math> comprises the following data:
Suppose <math>\mathcal{C},\mathcal{D}</math> are [[category|categories]]. A '''functor''' (also called '''covariant functor''') <math>\mathcal{F}</math> from <math>\mathcal{C}</math> to <math>\mathcal{D}</math> comprises the following data:


* A mapping <math>\mathcal{F}: \operatorname{Ob}\mathcal{C} \to \operatorname{Ob}\mathcal{D}</math>.
* A mapping <math>\mathcal{F}: \operatorname{Ob}\mathcal{C} \to \operatorname{Ob}\mathcal{D}</math>.
Line 10: Line 10:
* For any <math>A \in \mathcal{C}</math>, <math>\mathcal{F}(\operatorname{id}_A) = \operatorname{id}_{F(A)}</math>.
* For any <math>A \in \mathcal{C}</math>, <math>\mathcal{F}(\operatorname{id}_A) = \operatorname{id}_{F(A)}</math>.
* For any <math>A,B,C \in \mathcal{C}</math>, and <math>f \in \mathcal{C}(A,B), g \in \mathcal{C}(B,C)</math>, we have <math>F(g \circ f) = Fg \circ Ff</math>.
* For any <math>A,B,C \in \mathcal{C}</math>, and <math>f \in \mathcal{C}(A,B), g \in \mathcal{C}(B,C)</math>, we have <math>F(g \circ f) = Fg \circ Ff</math>.
There is a related notion of [[contravariant functor]]. Note that a contravariant functor between two categories is ''not'' a functor between the categories. To emphasize that a functor is a functor and not a contravariant functor, we use the term ''covariant functor''.

Revision as of 23:18, 9 December 2008

Definition

Suppose are categories. A functor (also called covariant functor) from to comprises the following data:

  • A mapping .
  • For any , a mapping .

satisfying the following condition:

  • For any , .
  • For any , and , we have .

There is a related notion of contravariant functor. Note that a contravariant functor between two categories is not a functor between the categories. To emphasize that a functor is a functor and not a contravariant functor, we use the term covariant functor.