Contravariant functor: Difference between revisions

From Cattheory
(New page: ==Definition== ===Definition in basic terms=== Suppose <math>\mathcal{C}, \mathcal{D}</math> are categories. A '''contravariant functor''' <math>\mathcal{F}:\mathcal{C} \to ...)
 
No edit summary
 
Line 7: Line 7:
* A mapping <math>\mathcal{F}: \operatorname{Ob}\mathcal{C} \to \operatorname{Ob}\mathcal{D}</math>.
* A mapping <math>\mathcal{F}: \operatorname{Ob}\mathcal{C} \to \operatorname{Ob}\mathcal{D}</math>.
* For every <math>A,B \in \operatorname{Ob}\mathcal{C}</math>, a mapping <math>\mathcal{F}: \mathcal{C}(A,B) \to \mathcal{D}(\mathcal{F}B,\mathcal{F}A)</math>.
* For every <math>A,B \in \operatorname{Ob}\mathcal{C}</math>, a mapping <math>\mathcal{F}: \mathcal{C}(A,B) \to \mathcal{D}(\mathcal{F}B,\mathcal{F}A)</math>.
satisfying the following conditions:
* It preserves the identity map: For any <math>A \in \operatorname{Ob}\mathcal{C}</math>, <math>\mathcal{F}(\operatorname{id}_A) = \operatorname{id}_{\mathcal{F}A}</math>.
* It preserves composition, albeit reversing the order of composition: For any <math>A,B,C \in \operatorname{Ob}\mathcal{C}</math>, and <math>f \in \mathcal{C}(A,B), g \in \mathcal{C}(B,C)</math>, we have <math>\mathcal{F}(g \circ f) = \mathcal{F}f \circ \mathcal{F}g</math>.


===Definition in terms of the opposite category===
===Definition in terms of the opposite category===

Latest revision as of 23:21, 9 December 2008

Definition

Definition in basic terms

Suppose are categories. A contravariant functor is defined by the following data:

  • A mapping .
  • For every , a mapping .

satisfying the following conditions:

  • It preserves the identity map: For any , .
  • It preserves composition, albeit reversing the order of composition: For any , and , we have .

Definition in terms of the opposite category

Suppose are categories. A contravariant functor from to can be defined as:

  • A functor from (the opposite category to ) to .
  • A functor from to (the opposite category to ).

A functor in the usual sense of the word is sometimes termed a covariant functor to contrast it with a contravariant functor.