Enriched category: Difference between revisions
(New page: ==Definition== Suppose <math>\mathcal{M}</math> is a defining ingredient::monoidal category. A '''category enriched in''' <math>\mathcal{M}</math> is defined as a <math>\mathcal{C}</m...) |
|||
Line 8: | Line 8: | ||
* For any objects <math>A,B,C \in \operatorname{Ob}\mathcal{C}</math>, a morphism in <math>\mathcal{M}</math>: | * For any objects <math>A,B,C \in \operatorname{Ob}\mathcal{C}</math>, a morphism in <math>\mathcal{M}</math>: | ||
<math>\circ: \mathcal{C}(B,C) \otimes \mathcal{C}(A,B) \to \mathcal{C}(A, | <math>\circ: \mathcal{C}(B,C) \otimes \mathcal{C}(A,B) \to \mathcal{C}(A,C)</math> | ||
where <math>\otimes</math> denotes the monoidal operation on <math>\mathcal{M}</math>. | where <math>\otimes</math> denotes the monoidal operation on <math>\mathcal{M}</math>. | ||
Line 15: | Line 15: | ||
* For any <math>A,B,C,D \in \operatorname{Ob}\mathcal{C}</math>, with <math>f \in \mathcal{C}(A,B), g \in \mathcal{C}(B,C), h \in \mathcal{C}(C,D)</math>, we have <math>h \circ (g \circ f) = (h \circ g) \circ f</math>. | * For any <math>A,B,C,D \in \operatorname{Ob}\mathcal{C}</math>, with <math>f \in \mathcal{C}(A,B), g \in \mathcal{C}(B,C), h \in \mathcal{C}(C,D)</math>, we have <math>h \circ (g \circ f) = (h \circ g) \circ f</math>. | ||
* For any <math>A,B \in \operatorname{Ob}\mathcal{C}</math>, {{fillin}} | * For any <math>A,B \in \operatorname{Ob}\mathcal{C}</math>, the map <math>\circ: \mathcal{C}(B,B) \otimes \mathcal{C}(A,B) \to \mathcal{C}(A,B)</math>, composed with <math>u_B</math> on the first coordinate, gives the identity map on the second coordinate. Similarly, the other way around. Need to make more precise -- {{fillin}} |
Latest revision as of 15:08, 29 December 2009
Definition
Suppose is a monoidal category. A category enriched in is defined as a equipped with the following data:
- A collection of objects .
- For any objects , an object .
- For any object , a unit map from the unit object in to .
- For any objects , a morphism in :
where denotes the monoidal operation on .
satisfying the following conditions:
- For any , with , we have .
- For any , the map , composed with on the first coordinate, gives the identity map on the second coordinate. Similarly, the other way around. Need to make more precise -- Fill this in later