Enriched category: Difference between revisions

From Cattheory
(New page: ==Definition== Suppose <math>\mathcal{M}</math> is a defining ingredient::monoidal category. A '''category enriched in''' <math>\mathcal{M}</math> is defined as a <math>\mathcal{C}</m...)
 
 
Line 8: Line 8:
* For any objects <math>A,B,C \in \operatorname{Ob}\mathcal{C}</math>, a morphism in <math>\mathcal{M}</math>:
* For any objects <math>A,B,C \in \operatorname{Ob}\mathcal{C}</math>, a morphism in <math>\mathcal{M}</math>:


<math>\circ: \mathcal{C}(B,C) \otimes \mathcal{C}(A,B) \to \mathcal{C}(A,B)</math>
<math>\circ: \mathcal{C}(B,C) \otimes \mathcal{C}(A,B) \to \mathcal{C}(A,C)</math>


where <math>\otimes</math> denotes the monoidal operation on <math>\mathcal{M}</math>.
where <math>\otimes</math> denotes the monoidal operation on <math>\mathcal{M}</math>.
Line 15: Line 15:


* For any <math>A,B,C,D \in \operatorname{Ob}\mathcal{C}</math>, with <math>f \in \mathcal{C}(A,B), g \in \mathcal{C}(B,C), h \in \mathcal{C}(C,D)</math>, we have <math>h \circ (g \circ f) = (h \circ g) \circ f</math>.
* For any <math>A,B,C,D \in \operatorname{Ob}\mathcal{C}</math>, with <math>f \in \mathcal{C}(A,B), g \in \mathcal{C}(B,C), h \in \mathcal{C}(C,D)</math>, we have <math>h \circ (g \circ f) = (h \circ g) \circ f</math>.
* For any <math>A,B \in \operatorname{Ob}\mathcal{C}</math>, {{fillin}}
* For any <math>A,B \in \operatorname{Ob}\mathcal{C}</math>, the map <math>\circ: \mathcal{C}(B,B) \otimes \mathcal{C}(A,B) \to \mathcal{C}(A,B)</math>, composed with <math>u_B</math> on the first coordinate, gives the identity map on the second coordinate. Similarly, the other way around. Need to make more precise -- {{fillin}}

Latest revision as of 15:08, 29 December 2009

Definition

Suppose is a monoidal category. A category enriched in is defined as a equipped with the following data:

  • A collection of objects .
  • For any objects , an object .
  • For any object , a unit map from the unit object in to .
  • For any objects , a morphism in :

where denotes the monoidal operation on .

satisfying the following conditions:

  • For any , with , we have .
  • For any , the map , composed with on the first coordinate, gives the identity map on the second coordinate. Similarly, the other way around. Need to make more precise -- Fill this in later